2025年高职单招每日一练《生物》4月29日专为备考2025年生物考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、柳穿鱼的花有两侧对称和辐射对称两种类型。两种柳穿鱼杂交,子一代均为两侧对称。子一代自交,得到两侧对称植株34株,辐射对称植株5株。进一步研究发现,两种柳穿鱼的Lcyc基因序列相同,但表达情况不同,两侧对称花植株的Lcyc基因表达而辐射对称花植株不表达,二者的甲基化情况如图所示。
下列叙述正确的是()
- A:控制两侧对称与辐射对称的基因所含遗传信息不同
- B:F2性状分离比说明花型遗传遵循基因的分离定律
- C:控制辐射对称的Lcyc基因的甲基化程度相对较高
- D:推测甲基化程度与Lcyc基因的表达程度呈正相关
答 案:C
解 析:本题主要考查表观遗传的机制。题干说两种柳穿鱼的Lcyc基因序列相同,可知所含遗传信息相同,A错误;所得F2植株数较少,且性状比不是3:1,不符合分离定律,B错误;据图可知,辐射对称全甲基化和半甲基化位点均较多,C正确;据图可知,辐射对称的甲基化程度相对较高,题干说两侧对称花植株的Lcye基因表达而辐射对称花植株不表达,可推测甲基化程度与Lcye基因的表达程度呈负相关,D错误。
2、肺炎链球菌的体外转化实验中,使R型细菌转化为S型细菌的转化因子是()
- A:荚膜
- B:蛋白质
- C:R型细菌的DNA
- D:S型细菌的DNA
答 案:D
多选题
1、以下属于脐带血中有功能造血干细胞的特点的是()(填字母)。
- A:表现出较强的细胞分裂能力
- B:细胞呼吸相关酶的含量增加
- C:细胞抗自由基氧化能力增强
- D:增加单位脐带血中造血干细胞的数量
答 案:ABC
解 析:本题主要考查获取信息的能力。结合文中信息可知A、B、C均正确,NOV发挥作用后,造血干细胞总量几乎不变,D错误。
2、下列选项中,能体现基因剂量补偿效应的有()(多选)。
- A:雄性果蝇X染色体上的基因转录量加倍
- B:四倍体番茄的维生素C含量比二倍体的几乎增加一倍
- C:雌性秀丽隐杆线虫每条X染色体上的基因转录量减半
答 案:AC
主观题
1、学习以下材料,回答相关问题。 研究人员利用线虫和小鼠做模型进行的研究发现,一种负责转运脂肪的卵黄脂蛋白可降低生物体的寿命。在线虫体内,卵黄脂蛋白一方面参与脂肪从肠道向机体细胞的转移,另一方面也可能与脂肪代谢有关。细胞中的溶酶体脂解(脂肪降解)是脂肪代谢的重要途径。研究人员通过遗传的办法减少线虫的卵黄脂蛋白,发现溶酶体脂解强度增加,脂肪积累量减少,线虫寿命平均延长了40%。据此,研究人员推测卵黄脂蛋白可能通过①溶酶体脂解,降低了脂肪消耗所可能带来的寿命延长。小鼠体内的载脂蛋白B与线虫中的卵黄脂蛋白是“近亲”,载脂蛋白B可以被认为是小鼠中的一种卵黄脂蛋白。在小鼠体内,载脂蛋白B的作用也是将肠道中摄入的脂肪转移到机体细胞加以利用或储藏到脂肪组织中。随后,研究人员联想到另外一种寿命增加的模型——饮食限制,即吃得越少,活得越久。刚好有证据表明,饮食限制的小鼠体内脂蛋白B的水平明显下降。据此,研究人员推测,饮食限制可能通过②载脂蛋白B的合成,阻碍脂肪的运输,减少脂肪的堆积,从而延长小鼠的寿命。综合上述结果,研究者认为,或许可以通过调控卵黄脂蛋白的合成来调节脂肪运输,同时通过卵黄脂蛋白调节溶酶体脂解来影响生物体的寿命。 (1)脂肪是细胞内良好的()物质,检测细胞中的脂肪时,可以用苏丹Ⅲ染液对材料进行染色,多余的染料可以用()洗去,细胞中含有的脂肪将被染成()色。 (2)卵黄脂蛋白可以直接参与(),进而影响脂肪代谢和生物体的寿命。 (3)文中①、②两处空白应填入的词语分别为()(请选填“促进”或“抑制”)。 (4)有同学看到相关报道后开始节食,早饭也不吃了,请你从健康生活的角度谈谈对这种行为的看法并给出相关建议:()。
答 案:(1)储能;50%的酒精;橘黄 (2)运输 (3)抑制、抑制 (4)这是不可取的,饮食限制虽然可能延长寿命,但是在满足了机体基本的能量需求的前提下进行的,摄食是机体获取物质和能量的主要途径,如果不吃早餐,会使组织细胞不能获得最基本的物质和能量需求,进而会影响正常的生命活动,如影响大脑的思考,进而影响了学习能力的提高,同时青少年正处在长身体的时期,节食会对自身的生长发育带来严重的影响,若长期这样,可能会因为蛋白质摄入不足,导致出现组织水肿或功能紊乱等严重的问题。
2、福橘是我国的传统名果,科研人员以航天搭载的福橘茎尖为材料,进行了研究。
请回答问题:
(1)福橘茎尖经组织培养后可形成完整的植株,原因是植物细胞具有()性,此过程发生了细胞的增殖和()。
(2)为探索航天搭载对细胞有丝分裂的影响,科研人员对组织培养的福橘茎尖细胞进行显微观察。
①观察时拍摄的两幅显微照片如图所示。照片a和b中的细胞分别处于有丝分裂的()期和后期。正常情况下,染色体的着丝粒排列在细胞中央的一个平面上,之后着丝粒分裂,()分开,成为两条染色体,分别移向细胞两极。
②图中箭头所指位置出现了落后的染色体。有丝分裂过程中,染色体在()的牵引下运动,平均分配到细胞两极。落后染色体的出现很可能是其结构异常导致的。
(3)科研人员发现,变异后的细胞常会出现染色质凝集等现象,最终自动死亡,这种现象称为细胞()。因此,若要保留更多的变异类型,还需进一步探索适当的方法。
答 案:(1)全能;分化 (2)①中;姐妹染色单体②纺锤丝 (3)凋亡
填空题
1、高温强光会严重影响草莓幼苗的生长和发育。科研人员探究壳聚糖如何缓解高温强光对草莓产量的影响。
(1)草莓的叶肉细胞中,光合色素位于叶绿体的()薄膜上,其捕获的光能可转化为有机物中的()
(2)在自然条件和高温强光条件下,用不同浓度的壳聚糖溶液处理草莓,结果如下图。
据图可知,高温强光使草莓的叶绿素含量(),喷施壳聚糖后得到缓解,其中喷施 ()mg·kg-1壳聚糖缓解效果更好。
(3)研究发现,壳聚糖处理后草莓叶片的气孔开放程度增加,促进()进入叶肉细胞参与光合作用。
(4)综合上述研究,壳聚糖能有效缓解高温强光对草莓产量的影响,原因可能是:一方面通过提高叶绿素含量增强光反应;另一方面()从而促进有机物的合成。
答 案:(1)类囊体 化学能 (2)下降 100 (3)CO2 (4)通过提高叶片内的 CO2含量增强暗反应
2、茶尺蠖(茶尺蛾的幼虫)是我国茶树的主要害虫,影响茶叶的产量。请回答问题:
(1)E病毒对茶尺蠖具有较高的致病力。研究E病毒对生活在甲、乙两个不同地域茶尺蠖死亡率的影响,结果如图1所示。对甲、乙两地茶尺蛾进行形态学观察,结果如图2所示。
①据图1分析,()地的茶尺蠖对E病毒更敏感。
②图2显示,两地茶尺蛾的形态特征基本一致,由于长期()隔离导致种群基因库存在差别,使得甲、乙两地茶尺蛾颜色深浅和存()在差异。
(2)基于上述研究,推测甲、乙两地茶尺蛾为两个物种。为验证推测,将甲、乙两地的茶尺蛾进行杂交,结果如下表。
注:羽化是指由蛹发育为成虫的过程
①据表可知,与组合一、组合二相比,组合三受精卵数量、卵孵化率均();茶尺蠖以茶树的叶为食,且食量较大,组合三中幼虫到化蛹的时间短,使蛹的重量()羽化率低,最终导致F1个体数量下降,且出现畸形。
②组合三中F1雌雄比例失调,羽化时间不同步,难以配对,不能产生F2,说明两地茶尺蛾出现了()
③上述分析结()果(填“支持”或“不支持”)推测。
答 案:(1)①甲②地理 体型大小(2)①显著降低 减轻 ②生殖隔离 ③支持
简答题
1、请阅读下面的科普短文,并回答问题: 20世纪60年代,有人提出:在生命起源之初,地球上可能存在一个RNA世界。在原始生命中,RNA既承担着遗传信息载体的功能,又具有催化化学反应的作用。 现有很多证据支持“RNA世界论”的观点。例如,RNA能自我复制,满足遗传物质传递遗传信息的要求;RNA既可作为核糖体结构的重要组成部分,又能在遗传信息的表达过程中作为DNA与蛋白质之间的信息纽带;科学家在原生动物四膜虫等生物中发现了核酶(具有催化活性的RNA)后,又陆续发现在蛋白质合成过程和mRNA的加工过程中均有核酶参与。 蛋白质有更复杂的氨基酸序列,更多样的空间结构,催化特定的底物发生化学反应,而RNA在催化反应的多样性及效率上均不如蛋白质。所以,RNA的催化功能逐渐被蛋白质代替。 RNA结构不稳定,容易受到环境影响而发生突变。RNA还能发生自身催化的水解反应,不易产生更长的多核苷酸链,携带的遗传信息量有限。所以,RNA作为遗传物质的功能逐渐被DNA代替。现今的绝大多数生物均以DNA为遗传物质,还有一个重要原因是DNA不含碱基U。研究发现,碱基C容易自发脱氨基而转变为U,若DNA含碱基U,与DNA复制相关的“修复系统”就无法区分并切除突变而来的U,导致DNA携带遗传信息的准确性降低。 地球生命共同传承着几十亿年来原始RNA演绎的生命之树,生命演化之初的RNA世界已转变为当今由RNA、DNA和蛋白质共同组成的生命世界。 (1)核酶的化学本质是() (2)RNA病毒的遗传信息蕴藏在()的排列顺序中。 (3)在“RNA世界”以后的亿万年进化过程中,RNA作为()的功能分别被蛋白质和DNA代替。 (4)在进化过程中,绝大多数生物以DNA作为遗传物质的原因是:与RNA相比,DNA分子() a.结构简单b.碱基种类多c.结构相对稳定d.复制的准确性高 (5)有人认为“生命都是一家”。结合上文,你是否认同这一说法,请说明理由:()
答 案:(1)RNA (2)碱基(核糖核苷酸) (3)酶和遗传物质 (4)cd (5)不认同;有的生物以DNA作为遗传物质,有的生物以RNA作为遗传物质认同;所有生物均以核酸作为遗传物质
2、学习下列材料,回答(1)~(3)题。
mRNA技术带来新一轮疗法革命
蛋白替代疗法一般用于治疗与特定蛋白质功能丧失相关的单基因疾病。由于酶缺失或缺陷引起的疾病可以用外源供应的酶进行治疗。例如,分别使用凝血因子VⅢ、凝血因子IX治疗A型、B型血友病。然而,一些蛋白质的体外合成非常困难,限制了这种疗法在临床上的应用。基于mRNA技术的疗法,是将体外获得的mRNA递送到人体的特定细胞中,让其合成原本缺乏的蛋白质,从而达到预防或治疗疾病的目的。
把mRNA从细胞外递送进细胞内,需借助递送系统。递送系统能保护mRNA分子,使其在血液中不被降解。纳米脂质体是目前已实现临床应用的递送系统,可以保证mRNA顺利接触靶细胞,再通过胞吞作用进入细胞。
研发mRNA药物遇到一个难题:外源mRNA进入细胞后会引发机体免疫反应,出现严重的炎症。科学家卡塔琳·考里科和德鲁·韦斯曼成功对mRNA进行化学修饰,将组成mRNA的尿苷替换为假尿苷(如图甲所示),修饰过的mRNA进入细胞后能有效躲避免疫系统的识别,大大降低了炎症反应,蛋白合成量显著增加。两位科学家因此获得2023年诺贝尔生理学或医学奖。
理论上,蛋白质均能以mRNA为模板合成。因此有人认为mRNA是解锁各类疾病的“万能钥匙”,可以探索利用mRNA技术治疗蛋白质异常的疾病,达到精准治疗的目的。
(1)推测用于递送mRNA的纳米脂质体中的“脂质”主要指()
(2)尿苷由一分子尿嘧啶和一分子核糖组成,一分子尿苷再与一分子()组合,构成尿嘧啶核糖核苷酸。将mRNA的尿苷替换为假尿苷,其碱基排列顺序()(填“改变”或“未改变”)。mRNA进入细胞质后,会指导合成具有一定()顺序的蛋白质。
(3)文中提到,mRNA是解锁各类疾病的“万能钥匙”。图乙为用mRNA技术治疗疾病的思路,请补充I、Ⅱ处相应的内容。I.();Ⅱ().
答 案:(1)磷脂 (2)磷酸 未改变 氨基酸 (3)基因 mRNA
精彩评论