多彩职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2024年05月15日成考高起点每日一练《数学(文史)》

2024年05月15日成考高起点每日一练《数学(文史)》

2024/05/15 作者:匿名 来源:本站整理

2024年成考高起点每日一练《数学(文史)》5月15日专为备考2024年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、任选一个两位数,它恰好是10的倍数的概率是()

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:由已知条件可知此题属于等可能事件.两位数(正整数)从10~99共有90个,则n=90,是10的倍数的两位数共有9个,则m=9,故任选一个两位数(正整数),它恰好是10的倍数的概率是

2、()。

  • A:sinα+cosα
  • B:-sinα—cosα
  • C:sinα—cosα
  • D:cosα—sinα

答 案:D

解 析:本题主要考查的知识点为三角函数的运算。 当时,cosα>sinα>0,所以

3、甲袋内有2个白球3个黑球,乙袋内有3个白球1个黑球,现从两个袋内各摸出1个球,摸出的两个球都是白球的概率是

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:由已知条件可知此题属于相互独立同时发生的事件,从甲袋内摸到白球的概率为P(A)=乙袋内摸到白球的概率为,所以现从两袋中各提出一个球,摸出的两个都是白球的概率为

4、()  

  • A:8
  • B:14
  • C:12
  • D:10

答 案:B

解 析:

主观题

1、在△ABC中,已知三边 a、b、c 成等差数列,且最大角∠A是最小角的2倍, a: b :c.  

答 案:

2、设函数f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的单调区间

答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得 6-6m-36=-36 故m=1. (Ⅱ)由(Ⅰ)得f'(x)= 令f'(x)=0,解得 当x<-3时,f'(x)>0; 当-32时,f'(x)>0; 故f(x)的单调递减区间为(-3,2),f(x)的单调递增区间为(-∞,-3),(2,+∞)  

3、已知函数f(x)=(x-4)(x2-a)。(I)求f’(x);
(Ⅱ)若f’(-1)=8,求f(x)在区间[0,4]的最大值与最小值。

答 案:(I)f'(x) =(x-4)'(x2-a)+(x-4)(x2-a)’ =x2-a+2x(x-4) =3x2-8x-a. (Ⅱ)由于f’(-1)=3+8-a=8,得a=3. 令f'(x)=3x2-8x-3=0,解得x1=3,(舍去)又f(0)=12,f(3)=-6,f(4)=0所以在区间[0,4]上函数最大值为12,最小值为-6

4、如图:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小数表示,保留一位小数)  

答 案:如图  

填空题

1、过点(2,0)作圆x2+y2=1的切线,切点的横坐标为()。

答 案:

解 析:本题主要考查的知识点为圆的切线. 设切点(x0,y0)则有所以故切点横坐标为  

2、九个学生期末考试的成绩分别为79 63 88 94 99 77 89 81 85这九个学生成绩的中位数为______。  

答 案:85  

解 析:本题主要考查的知识点为中位数. 将成绩按由小到大排列:63,77,79,81,85,88,89,94,99.因此中位数为85。

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论