2025年成考高起点每日一练《数学(文史)》2月13日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、与圆x2+y2=4关于点M(3,2)成中心对称的曲线方程是( )
- A:
- B:
- C:
- D:
答 案:C
解 析:与圆关于点M成中心对称的曲线还是圆.只要求出圆心和半径,即可求出圆的方程.圆x2+y2=4的圆心(0,0)关于点M(3,2)成中心对称的点为(6,4),所以所求圆的圆心为(6,4),半径与对称圆的半径相等,所以所求圆的方程为(x-6)2+(y-4)2=4. 【考点指要】本题主要考查中心对称图形的定义、中点坐标公式的灵活运用、圆的标准方程的求法,这些主要概念在考试大纲中要求掌握,同时也是近几年经常考到的知识点.
2、下列函数中,既是偶函数,又在区间(0,3)为减函数的是()。
- A:y=cosx
- B:y=log2x
- C:
- D:y=x2-4
答 案:A
3、设集合M={a,b,c,d},N=(a,b,c),则集合M∪N=()。
- A:{a,b,c}
- B:{d}
- C:{a,b,C,d}
- D:空集
答 案:C
4、已知两数的等差中项为10,等比中项为8,则以这两数为根的一元二次方程是()。
- A:x2+10x+8=0
- B:x2-10x+64=0
- C:x2-20x+8=0
- D:x2-20x+64=0
答 案:D
主观题
1、已知F是椭圆的右焦点,点M在抛物线y2=2px(p>0)上O为坐标原点,且△MOF为正三角形.
(Ⅰ)求P的值; (Ⅱ)求抛物线的焦点坐标和准线方程.
答 案:(Ⅰ)由椭圆方程可知,椭圆的长半轴a=5,短半轴,则椭圆的半焦距 即椭圆的右焦点F的坐标为
(4.0).
如图,因为△MOF为正三角形,OF=4,过M作MN⊥OF于N点,
【考点指要】本题主要考查椭圆、抛物线的概念,要求考生掌握它们的标准方程和性质,会用它们解决有关的问题.
2、教室里有50人在开会,其中学生35人,家长12人,老师3人,现校长在门外听到有人在发言,那么发言人是老师或学生的概率为多少?
答 案:此题属于互斥事件,发言人是老师的概率为,是学生的概率为
,故所求概率为。
3、已知lg2=a,lg3=b,求lg0.15关于a,b的表达式。
答 案:
4、在△ABC中,已知三边 a、b、c 成等差数列,且最大角∠A是最小角的2倍, a: b :c.
答 案:
填空题
1、函数y=2x(x+1)在x=2处的切线方程是__________.
答 案:10x-y-8=0
解 析:由函数y=2x(x+1) 知,y´=(2x2+2x)'=4x+2,则y´|x=2=10.又当x=2时,y=12,知此函数的切线过点(2,12),且斜率为10。则其切线方程为10(x-2)=y-12,即10x-y-8=0. 【考点指要】本题考查利用导数求曲线的切线方程,y=ƒ(x)在点P(x0,y0)处的导数值即为曲线y=ƒ(x)在该点处切线的斜率.
2、已知10x=3,10y=4,则103(x-y)的值等于______。
答 案:
解 析:由已知,103x=27,103y=64,原式=
精彩评论