多彩职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2025年02月20日成考高起点每日一练《数学(理)》

2025年02月20日成考高起点每日一练《数学(理)》

2025/02/20 作者:匿名 来源:本站整理

2025年成考高起点每日一练《数学(理)》2月20日专为备考2025年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、一部电影在4个单位轮映,每一单位放映一场,轮映次序有()。

  • A:4种
  • B:16种
  • C:24种
  • D:256种

答 案:C

2、设log2x=a,则log2(2x2)=()。

  • A:2a2+1
  • B:2a2-1
  • C:2a-1
  • D:2a+1

答 案:D

解 析:本题主要考查的知识点为对数函数的性质

3、教室里有50人在开会,其中学生35人,家长12人,老师3人,若校长站在门外听到有人发言,那么发言人是老师或学生的概率为()。

  • A:
  • B:
  • C:
  • D:

答 案:A

4、在△ABC中,c-acosB=()。

  • A:bcosA
  • B:acosC
  • C:bcosB
  • D:ccosA

答 案:A

解 析:由余弦定理

主观题

1、某工厂每月生产x台游戏机的收入为R(x)=+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?  

答 案:利润 =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=+80x-306 法一:用二次函数当a<0时有最大值 是开口向下的抛物线,有最大值 法二:用导数来求解 因为x=90是函数在定义域内唯一驻点 所以x=90是函数的极大值点,也是函数的最大值点,其最大值为L(90)=3294  

2、记△ABC的内角A,B,C的对边分别为a,b,c,已知B=60°,b2=ac,求A。    

答 案:由余弦定理b2=a2+c2-2accosB,可得ac=a2+c2-ac,即a2+c2-2ac=(a-c)2=0,解得a=c。 又因为B=60°,故△ABC为等边三角形,所以A=60°

3、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.

答 案:由已知得解得

4、已知数列的前n项和 求证:是等差数列,并求公差和首项。  

答 案:  

填空题

1、100件产品中有3件次品,每次抽取一件,有放回的抽取三次,恰有1件是次品的概率是______。  

答 案:0.0847

解 析:由于三次抽取是独立的,每次抽取可看做是一次试验,每次试验只有两个可能结果:“正品”或“次品”,次品率为,因此二次独立且重复试验恰有1件次品率为  

2、在△ABC中,a=2,b=,∠B=,则∠A=______。

答 案:

解 析:

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论

相关文章