2025年成考高起点每日一练《数学(理)》2月23日专为备考2025年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、设f(x)=x3+ax2+x为奇函数,则a=()。
- A:1
- B:0
- C:
- D:-2 D.C.-1
答 案:B
解 析:本题主要考查的知识点为函数的奇偶性. 因为f(x)为奇函数,故f(-x)=-f(x)。即-x3+ax2-x=-x3-ax2-x,a=0。
2、二项式(2x-1)6的展开式中,含x4项系数是()。
- A:-15
- B:-240
- C:15
- D:240
答 案:D
解 析:
3、已知,则sin2α=()
- A:
- B:
- C:
- D:
答 案:D
解 析:两边平方得
,故
4、函数y=log3(x+1)的反函数为()。
- A:y=3x-1
- B:y=3x+1
- C:y=3x-1
- D:y=3x+1
答 案:C
解 析:由 y=log3(x+1),得x+1=3y,即 x=3y-1,函数 y=log3(x+1)的反函数为 y=3x-1(答案为C)
主观题
1、设函数f(x)=
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求 f(x)的极值
答 案:(Ⅰ)函数的定义域为
(Ⅱ)
2、在正四棱柱ABCD-A'B'C'D'中,
(Ⅰ)写出向量
关于基底{a,b,c}的分解式
(Ⅱ)求证:
(Ⅲ)求证:
答 案:(Ⅰ)由题意知(如图所示)
(Ⅱ)
(Ⅲ)
由已知,a,c是正四棱柱的棱,a,b,c两两垂直
3、已知等差数列{an}中,a1+a2+a3=6,a2+a4+a5= 12求{an}的首项与公差。
答 案:因为{an}为等差数列,
4、设分别讨论x→0及x→1时f(x)的极限是否存在?
答 案:∴f(x)在x=0处极限不存在 同理f(x)在x=1处极限存在
填空题
1、若tanα-cotα=1,则=______。
答 案:4
解 析:由立方差公式得,tan3α-cot3α=(tana-cotα)(tan2α+tanαcota+cot2α)(tana-cotα)[(tanα-cotα)2+3tanαcotα]=4
2、不等式的解集为()
答 案:
解 析:
精彩评论