多彩职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2025年04月16日成考高起点每日一练《数学(文史)》

2025年04月16日成考高起点每日一练《数学(文史)》

2025/04/16 作者:匿名 来源:本站整理

2025年成考高起点每日一练《数学(文史)》4月16日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、若函数f(x)=1+在(0,+∞)上是减函数,则()

  • A:a>1
  • B:a>2
  • C:1
  • D:0

答 案:D

解 析:由已知条件函数f(x)=1+在(0,+∞)上是减函数,及对数函数的性质可得底数0

2、袋中有6个球,其中4个红球,2个白球,从中随机取出2个球,则这2个球都为红球的概率为()

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:两个球都是红球的概率为

3、由数字1、2、3、4组成没有重复数字的两位数共有()。

  • A:6个
  • B:12个
  • C:8个
  • D:10个

答 案:B

4、设f(x)=x3+4x2+11x+7,则f(x+1)=()。

  • A:x3+7x2+22x+23
  • B:x3—7x2+22x+23
  • C:x3+7x2-22x+23
  • D:x3-7x2-22x+23

答 案:A

解 析:f(x+1) =(x+1)3 +4(x+1}2+11(x+1)+7 =x3+3x2+3x+1+4x2+8x+4+11x+11+7 =x3+7x2+22x+23 综上所述,答案:x3+7x2+22x+23

主观题

1、已知F是椭圆的右焦点,点M在抛物线y2=2px(p>0)上O为坐标原点,且△MOF为正三角形.  (Ⅰ)求P的值; (Ⅱ)求抛物线的焦点坐标和准线方程.

答 案:(Ⅰ)由椭圆方程可知,椭圆的长半轴a=5,短半轴,则椭圆的半焦距 即椭圆的右焦点F的坐标为 (4.0). 如图,因为△MOF为正三角形,OF=4,过M作MN⊥OF于N点, 【考点指要】本题主要考查椭圆、抛物线的概念,要求考生掌握它们的标准方程和性质,会用它们解决有关的问题.  

2、已知三角形的三边边长组成公差为1的等差数列,且最大角是最小角的二倍,求三边之长。  

答 案:三角形的三边边长分别为4,5,6。

3、若tanα、tanβ是关于x的方程mx2-(2m-3)x+m-2=0的两个实根,求tan(α+β)的取值范围

答 案: 由(1)(2)得,tan(a+β)=m-3/2;由(3)得m≤9/4且m≠0所以tan(a+β)的取值范围是(-∞,-3/2)U(-3/2,3/4)  

4、教室里有50人在开会,其中学生35人,家长12人,老师3人,现校长在门外听到有人在发言,那么发言人是老师或学生的概率为多少?  

答 案:此题属于互斥事件,发言人是老师的概率为,是学生的概率为,故所求概率为。

填空题

1、log2[log2(log381)]=______。  

答 案:1

解 析:由于log381=log334=4,于是 原式=log2(log24)=log22=1。  

2、不等式的解集是()  

答 案:

解 析:

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论

相关文章