2025年成考高起点每日一练《数学(文史)》4月18日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、已知直线l:3x一2y-5=0,圆C:,则C上到l的距离为1的点共有()
- A:1个
- B:2个
- C:3个
- D:4个
答 案:D
解 析:由题可知圆的圆心为(1.-1),半径为2,圆心到直线的距离为,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.
2、()。
- A:sinα+cosα
- B:-sinα—cosα
- C:sinα—cosα
- D:cosα—sinα
答 案:D
解 析:本题主要考查的知识点为三角函数的运算。 当时,cosα>sinα>0,所以
3、直线绕原点按逆时针方向旋转30°后所得直线与圆(x-2)2+y2=3的位置关系是()。
- A:直线过圆心
- B:直线与圆相交,但不过圆心
- C:直线与圆相切
- D:直线与圆相离
答 案:C
4、△ABC中,已知AC=12,∠A=30°,∠B=120°,则BC=()
- A:
- B:
- C:
- D:
答 案:B
主观题
1、若双曲线的两条准线将两个焦点的连线分成三等分,求双曲线的离心率。
答 案:设双曲线的半焦距为c,则双曲线 【考点指要】本题要求根据双曲线的焦距、离心率、准线方程三者之间的关系进行计算,属较容易题,在成人高考中常见.
2、如图:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小数表示,保留一位小数)
答 案:如图
3、cos20°cos40°cos80°的值。
答 案:
4、求下列函数的最大值、最小值和最小正周期: (1)
2)y=6cosx+8sinx
答 案: 所以函数的最大值是
最小值是
最小正周期为2π,
(2)要将6cosx+8sinx化为sinαcosx+cosαsinx这种形式,需使cosx与sinx的系数平方和为1,为此,将已知函数化为
因此,函数的最大值是10,最小值是-10,最小正周期为2π
填空题
1、已知向量a=(3,2),b=(-4,x),且a⊥b,则x=()
答 案:6
解 析:∵a⊥b, ∴3×(-4)+2x=0 ∴x=6.
2、已知关于t的二次方程t2-6tsinθ+tanθ=0(0<θ<)的两根相等,则sinθ+cosθ的值等于______。
答 案:
解 析:
精彩评论