多彩职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2025年05月01日成考高起点每日一练《数学(理)》

2025年05月01日成考高起点每日一练《数学(理)》

2025/05/01 作者:匿名 来源:本站整理

2025年成考高起点每日一练《数学(理)》5月1日专为备考2025年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、()。

  • A:是奇函数
  • B:是偶函数
  • C:既是奇函数,又是偶函数
  • D:既不是奇函数,又不是偶函数

答 案:A

解 析:

2、直线3x-4y-9=0与圆(θ为参数)的位置关系是

  • A:相交但直线不过圆心
  • B:相交但直线通过圆心
  • C:相切
  • D:相离

答 案:A

解 析:方法一: 圆心O(0,0),r=2,则圆心O到直线的距离为 0

3、两条直线是异面直线的充分条件是这两条直线()。

  • A:分别在两个平面内
  • B:是分别在两个相交平面内的不相交的直线
  • C:是分别在两个相交平面内的不平行的直线
  • D:分别在两个相交平面内,其中一条与这两个平面的交线相交于一点,而另一条不过这个点

答 案:D

4、下列各式中,不成立的是()。

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:可用排除法,A、B、C均成立。

主观题

1、(1)已知tanα=,求cot2α的值; (2)已知tan2α=1,求tanα的值。

答 案:(1)(2)由已知,得 解关于tanα的一元二次方程,得tanα=  

2、已知抛物线C:y2=2px(p>0)的焦点到准线的距离为1。 (I)求C的方程; (Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB

答 案:(I)由题意,该抛物线的焦点到准线的距离为 所以抛物线C的方程为 (Ⅱ)因A(l,m)(m>0)为C上一点,故有m2=2, 可得因此A点坐标为 设B点坐标为 因为则有解得x0=4 所以B点的坐标为  

3、设a为实数,且tanα和tanβ是方程ax2+(2a-3)x+(a-2)=0的两个实根,求tan(α+β)的最小值。

答 案:由已知得

4、当自变量为何值时,函数y=2x3-3x2-12x+21有极值,其极值为多少?  

答 案:y'=6x2-6x-12=6(x-2)(x+1) 当x<-1或x>2时,y>0,当-1 故当x=-1时有极大值,其值为f(-1)=28 当x=2时有极小值,其值为f(2)=1

填空题

1、y=cos22x的最大值是______,最小值______,周期T=______。  

答 案:1;0;

解 析:,最大值为,最小值为

2、已知,则=______。  

答 案:

解 析:

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论

相关文章