2025年成考高起点每日一练《数学(文史)》5月4日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、不等式|2x-3|≤1的解集为()
- A:{x|1≤x≤2}
- B:{x|x≤-1或x≥2}
- C:{x|1≤x≤3}
- D:{x|2≤x≤3}
答 案:A
解 析:故原不等式的解集为{x|1≤x≤2}
2、一批产品共有5件,其中4件为正品,1件为次品,从中一次取出2件均为正品的概率为()。
- A:0.6
- B:0.5
- C:0.4
- D:0.3
答 案:A
解 析:本题主要考查的知识点为随机事件的概率。 一次取出2件均为正品的概率为
3、的导数是
- A:
- B:
- C:
- D:
答 案:C
解 析:
4、已知3sin2α+8sinα-3=0,则cos2α=()。
- A:
- B:
- C:
- D:
答 案:A
解 析:由已知得(3sinα-1)(sinα+3)=0。 由于|sinα|≤1,所以sinα=。因此
。故选A。
主观题
1、已知等差数列前n项和
(Ⅰ)求通项
的表达式
(Ⅱ)求
的值
答 案:(Ⅰ)当n=1时,由得
也满足上式,故
=1-4n(n≥1)
(Ⅱ)由于数列
是首项为
公差为d=-4的等差数列,所以
是首项为
公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:
2、在△ABC中,已知证明a,b,c成等差数列。
答 案:
考点 本题主要考查三角函数的恒等变换以及积化和差公式的应用,积化和差有一定难度,请考生注意.
3、如图9-4,已知测速站P到公路L的距离为40米,一辆汽车在公路L上行驶,测得此车从A点行驶到8点所用的时间为2秒,并测得∠APO=60°,∠BPO=30°,计算此车从A到B的平均速度为多少km/h(结果保留到个位),并判断此车是否超过了80km/h的限制速度。
答 案:此车从A到B的平均速度为83(km/h),已经超过80km/h的限制速度。
4、已知tan2θ=2tan2ψ+1,求cos2θ+sin2ψ的值。
答 案:由已知,得
填空题
1、一个问题在1小时内,甲能独立解决的概率是0.5,乙能独立解决的概率是0.4,两人在1小时内解决问题的概率是______。
答 案:0.7
2、甲、乙、丙三位教师担任6个班的课,如果每人任选两个班上课有______种不同的任课方法。
答 案:90
精彩评论